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LElTER TO THE EDITOR 

On the motion equations of a spinning fluid 

Horace W Crater and Boris A Kupershmidt 
University of Tennessee Space Institute, Tullahoma, TN 37388, USA 

Received 15 March 1989 

Abstract. Using super-Hamiltonian formalism, we derive the motion equations of the 
adiabatic dynamics of a spinning fluid. 

The purpose of this letter is to derive the motion equations of a non-relativistic fluid 
whose particles carry spinning degrees of freedom. The method of derivation is based 
on the Hamiltonian formalism. 

We begin with the particle picture. Here the Poisson bracket (PB) has the form [ 11 

{ F, G} = canonical PB + Grassmann PB (1) 

a F a G  a F a G  
ax; ap: ap; ax; 

canonical PB = - --- - 

FS ZG 
Grassmann PB = - - at: a[: 

where: 1 c i 6 n;  1 s a s N ;  1 S s c S; n (=3)  is the dimension of space; S is the 
number of particles; N (=3)  is the number of components which the odd Grassmann 
spin variables {[’} carry; we sum on repeated indices unless warned not to; ;/a[ and 
$a[ (=a/a[) are the right and left partial [-derivatives respectively. 

The PB (1) is a sum of canonical PB (la) and the Grassmann PB (1  b)  in @,A( N). 
The latter bracket, for each fixed s, can be uniquely characterised by the property that 
the map 

Ra, = eaea (2) 

is canonical into the Lie-Poisson bracket on the dual space of the Lie algebra %:= 
so( N): 

{ Ra,, Rpv} = RavGpfi - Rnfisav + Rpfi8-v - Rgvsafi- (3) 

Imagine now that S is large, so that we can treat the motion of our collection of 

Mi (x ) := p :  s (x - x, ) (4) 

p ( x ) : =  m ’ S ( x - x , )  ( 5 )  

( 6 )  

particles as a flow. Set 

w n ( x )  := J;;;r gJ(x - x,) 
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where ms is the mass of the sth particle. Using the method of Bialynicki-Birula and 
Hubbard [2], we convert the particle PB (1) into the following field PB: 

{ Mi ( X) , M, ( X ’  ) } = [ M, ( x)d i + d,M, ( x ) ] S ( x - x ’ ) ( 7 a )  

{ M i ( x ) ,  P ( x ’ ) ) =  p ( x ) a i S ( x - x ’ )  ( 7 b )  

{ M ~ ( x ) ,  w , ( x ’ ) } = w , ( x ) ~ ~ ~ ( x - x ’ )  ( 7 c )  

{ w , ( x ) ,  w p ( x ‘ ) }  = A ~ s , ~ ~ ( ~ ) S ( ~ - ~ ’ )  ( 7 d )  

where ai  = d/dxi  and A = 1 is inserted into ( 7 d )  for future use. 

The PB ( 7 )  correspond to the following (super) Hamiltonian matrix? B, : 
Physics having served its purpose, we now revert to the mathematical language. 

Being linear in the field variables, the Hamiltonian matrix B, corresponds [3] to a Lie 
superalgebra, T(A ); the commutator in the latter is$ 

(9) 1 [ (q9( ;)]=(xYf;i;;“f;i;l; [XI, x21 ‘ Y 2  

where: XI, X’E D , ( K ) : =  {the Lie algebra of even vector fields (derivatives) in a 
commutative superalgebra K with n commuting even derivatives a,, . . . , a,};f’, f E & 
(even elements of the ring K ) ;  y ’ ,  y2 E ( Ki)” (N-component vectors of odd elements 
of the ring K )  and 

X( . ) := Xi( . ) , i  := X J , (  ‘ ). (10) 

The role of A is clear from (9): for A =0,  the Lie superalgebra T(0) becomes the 
Abelian semidirect sum 

T(0) = 0, CC [IC=, 0 (Ki) “ 3  (11) 

while this is not the case for A # 0. (Notice that L!?(A,) = T(A,) when A I A z  # 0.) 

7 The Hamiltonian matrix B is defined so that for a vector of basic variables A and Hamiltonian (density) 
H, A = B . SH/ SA. For a particle system with dynamical variables q, and p, , 

B = ( O  -1 0 ’) 
$ The commutator is defined in terms of the Hamiltonian matrix B, by 

-B(;j(;]-(;][ (;](;)] 
where - stands for the equality modulo divergences. 
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The { M , p }  peice of the Hamiltonian matrix B, corresponds to the case of the 
barostropic fluid dynamics; if we wish to take the entropy into account we simply 
o-extend the corresponding adiabatic Hamiltonian matrix. The result is 

Mj P 77 q 3  
Mi / w a i + a j M i  p a ,  -77,i  wsai \ 

0 0  0 
ajP 

B2=  
77 [ 77.j 

where 7 is the specific entropy. The particle map (2) has the following field analogue: 
the map 

La, = p- 'wawp (13) 
is canonical between the super-Hamiltonian matrix B2 (12) and the Hamiltonian 
matrix B,: 

where {La , ,  LFU}  is given by the formula (3) with the variables R and L interchanged. 
Thus, apart from the {p ,  17) piece, the Hamiltonian matrix B3 corresponds to the current 
Lie algebra 

D, = ( 978 K ) (15) 

D, cc [KOA"O(CeOK)] .  (16) 

and the full Hamiltonian matrix B3 corresponds to the semidirect sum Lie algebra 

We now are in a position to derive the motion equations. Having found the 
Hamiltonian structure(s), we need only to specify the Hamiltonian function, i.e. the 
total energy. Since we are dealing with the non-relativistic case, we take the total 
energy, as in adiabatic fluid dynamics, to be the sum of kinetic and potential energies 

M2 
H = - + p e  

2P 

where e is the specific energy (inemal+ external): 

Thence, we obtain the motion equations 

ae 
ax, - Mi,,  = ( p M ,  Mj + SUP) ,  + p - 

ae 
(19d) =div(w,p-'M)+Ap2wa- (no sum on CY) 

aw, 
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where 

P : =  p-+wp--l (pe) ( :p awp a )  
is the pressure. In the case that the even variables La, are chosen instead of the odd 
ones w,, one has 

with the pressure function P 

Remark. From formulae (19d) and (21) we see that the spinning variables w and L 
are not frozen-in. 
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