On the motion equations of a spinning fluid

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 22 L727
(http://iopscience.iop.org/0305-4470/22/15/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 06:57

Please note that terms and conditions apply.

## LETTER TO THE EDITOR

# On the motion equations of a spinning fluid 

Horace W Crater and Boris A Kupershmidt<br>University of Tennessee Space Institute, Tullahoma, TN 37388, USA

Received 15 March 1989


#### Abstract

Using super-Hamiltonian formalism, we derive the motion equations of the adiabatic dynamics of a spinning fluid.


The purpose of this letter is to derive the motion equations of a non-relativistic fluid whose particles carry spinning degrees of freedom. The method of derivation is based on the Hamiltonian formalism.

We begin with the particle picture. Here the Poisson bracket (PB) has the form [1]

$$
\begin{align*}
& \{F, G\}=\text { canonical } \mathrm{PB}+\text { Grassmann } \mathrm{PB}  \tag{1}\\
& \text { canonical } \mathrm{PB}=\frac{\partial F}{\partial x_{i}^{s}} \frac{\partial G}{\partial p_{i}^{s}}-\frac{\partial F}{\partial p_{i}^{s}} \frac{\partial G}{\partial x_{i}^{s}}  \tag{1a}\\
& \text { Grassmann } \mathrm{PB}=\frac{F \partial}{\partial \xi_{\alpha}^{s}} \frac{\vec{\partial} G}{\partial \xi_{\alpha}^{s}} \tag{1b}
\end{align*}
$$

where: $1 \leqslant i \leqslant n ; 1 \leqslant \alpha \leqslant N ; 1 \leqslant s \leqslant S ; n(=3)$ is the dimension of space; $S$ is the number of particles; $N(=3)$ is the number of components which the odd Grassmann spin variables $\left\{\xi^{s}\right\}$ carry; we sum on repeated indices unless warned not to; $\bar{\partial} / \partial \xi$ and $\vec{\partial} / \partial \xi(=\partial / \partial \xi)$ are the right and left partial $\xi$-derivatives respectively.

The PB (1) is a sum of canonical PB (1a) and the Grassmann PB ( $1 b$ ) in $\oplus_{s} \Lambda(N)$. The latter bracket, for each fixed $s$, can be uniquely characterised by the property that the map

$$
\begin{equation*}
R_{\alpha \beta}=\xi_{\alpha} \xi_{\beta} \tag{2}
\end{equation*}
$$

is canonical into the Lie-Poisson bracket on the dual space of the Lie algebra $\mathscr{G}:=$ so $(N)$ :

$$
\begin{equation*}
\left\{R_{\alpha \beta}, R_{\mu \nu}\right\}=R_{\alpha \nu} \delta_{\beta \mu}-R_{\alpha \mu} \delta_{\beta \nu}+R_{\beta \mu} \delta_{\alpha \nu}-R_{\beta \nu} \delta_{\alpha \mu} \tag{3}
\end{equation*}
$$

Imagine now that $S$ is large, so that we can treat the motion of our collection of particles as a flow. Set

$$
\begin{align*}
& M_{i}(x):=p_{i}^{s} \delta\left(x-x_{s}\right)  \tag{4}\\
& \rho(x):=m^{s} \delta\left(x-x_{s}\right)  \tag{5}\\
& \omega_{\alpha}(x):=\sqrt{m^{s}} \xi_{\alpha}^{s} \delta\left(x-x_{s}\right) \tag{6}
\end{align*}
$$

where $m^{s}$ is the mass of the sth particle. Using the method of Bialynicki-Birula and Hubbard [2], we convert the particle PB (1) into the following field PB :

$$
\begin{align*}
& \left\{M_{i}(x), M_{j}\left(x^{\prime}\right)\right\}=\left[M_{j}(x) \partial_{i}+\partial_{j} M_{i}(x)\right] \delta\left(x-x^{\prime}\right)  \tag{7a}\\
& \left\{M_{i}(x), \rho\left(x^{\prime}\right)\right\}=\rho(x) \partial_{i} \delta\left(x-x^{\prime}\right)  \tag{7b}\\
& \left\{M_{i}(x), \omega_{\alpha}\left(x^{\prime}\right)\right\}=\omega_{\alpha}(x) \partial_{i} \delta\left(x-x^{\prime}\right)  \tag{7c}\\
& \left\{\omega_{\alpha}(x), \omega_{\beta}\left(x^{\prime}\right)\right\}=\lambda \delta_{\alpha \beta} \rho(x) \delta\left(x-x^{\prime}\right) \tag{7d}
\end{align*}
$$

where $\partial_{i}=\partial / \partial x_{i}$ and $\lambda=1$ is inserted into (7d) for future use.
Physics having served its purpose, we now revert to the mathematical language. The PB (7) correspond to the following (super) Hamiltonian matrix $\dagger \mathbf{B}_{1}$ :

$$
\mathbf{B}_{1}=\begin{array}{ccc}
M_{j} & \rho & \omega_{\beta}  \tag{8}\\
M_{i} \\
\rho \\
\omega_{\alpha}
\end{array}\left(\begin{array}{ccc}
M_{j} \partial_{i}+\partial_{j} M_{i} & \rho \partial_{i} & \omega_{\beta} \partial_{i} \\
\partial_{j} \rho & 0 & 0 \\
\partial_{j} \omega_{\alpha} & 0 & \lambda \rho \delta_{\alpha \beta}
\end{array}\right) .
$$

Being linear in the field variables, the Hamiltonian matrix $\mathbf{B}_{1}$ corresponds [3] to a Lie superalgebra, $\mathscr{L}(\lambda)$; the commutator in the latter is $\ddagger$

$$
\left[\left(\begin{array}{c}
X^{1}  \tag{9}\\
f^{1} \\
\boldsymbol{\gamma}^{1}
\end{array}\right),\left(\begin{array}{c}
X^{2} \\
f^{2} \\
\boldsymbol{\gamma}^{2}
\end{array}\right)\right]=\left(\begin{array}{c}
{\left[X^{1}, X^{2}\right]} \\
X^{1}\left(f^{2}\right)-X^{2}\left(f^{1}\right)-\lambda \boldsymbol{\gamma}^{1} \cdot \boldsymbol{\gamma}^{2} \\
X^{1}\left(\boldsymbol{\gamma}^{2}\right)-X^{2}\left(\boldsymbol{\gamma}^{1}\right)
\end{array}\right)
$$

where: $X^{1}, X^{2} \in D_{n}(K):=\{$ the Lie algebra of even vector fields (derivatives) in a commutative superalgebra $K$ with $n$ commuting even derivatives $\left.\partial_{1}, \ldots, \partial_{n}\right\} ; f^{1}, f^{2} \in K_{\bar{\rho}}$ (even elements of the ring $K$ ); $\boldsymbol{\gamma}^{1}, \boldsymbol{\gamma}^{2} \in\left(K_{\overline{1}}\right)^{N}$ ( $N$-component vectors of odd elements of the ring $K$ ) and

$$
\begin{equation*}
X(\cdot):=X_{i}(\cdot)_{, i}:=X_{i} \partial_{i}(\cdot) . \tag{10}
\end{equation*}
$$

The role of $\lambda$ is clear from (9): for $\lambda=0$, the Lie superalgebra $\mathscr{L}(0)$ becomes the Abelian semidirect sum

$$
\begin{equation*}
\mathscr{L}(0)=D_{n} \propto\left[K_{\overline{0}} \oplus\left(K_{\bar{⿺}}\right)^{N}\right] \tag{11}
\end{equation*}
$$

while this is not the case for $\lambda \neq 0$. (Notice that $\mathscr{L}\left(\lambda_{1}\right) \approx \mathscr{L}\left(\lambda_{2}\right)$ when $\lambda_{1} \lambda_{2} \neq 0$.)
$\dagger$ The Hamiltonian matrix $\mathbf{B}$ is defined so that for a vector of basic variables $\boldsymbol{A}$ and Hamiltonian (density) $H, \dot{A}=\mathbf{B} \cdot \delta H / \delta \mathbf{A}$. For a particle system with dynamical variables $q_{i}$ and $p_{j}$,

$$
\mathbf{B}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

$\ddagger$ The commutator is defined in terms of the Hamiltonian matrix $\mathbf{B}_{1}$ by

$$
-\mathbf{B}_{1}\left(\begin{array}{l}
\boldsymbol{X}^{1} \\
f^{1} \\
\boldsymbol{\gamma}^{1}
\end{array}\right)^{1}\left(\begin{array}{c}
\boldsymbol{X}^{2} \\
f^{2} \\
\boldsymbol{\gamma}^{2}
\end{array}\right) \sim\left(\begin{array}{c}
\boldsymbol{M} \\
\rho \\
\omega
\end{array}\right)^{\prime}\left[\left(\begin{array}{l}
\boldsymbol{X}^{1} \\
f^{1} \\
\boldsymbol{\gamma}^{1}
\end{array}\right),\left(\begin{array}{c}
\boldsymbol{X}^{2} \\
f^{2} \\
\boldsymbol{\gamma}^{2}
\end{array}\right)\right]
$$

where $\sim$ stands for the equality modulo divergences.

The $\{\boldsymbol{M}, \rho\}$ peice of the Hamiltonian matrix $B_{1}$ corresponds to the case of the barostropic fluid dynamics; if we wish to take the entropy into account we simply $\boldsymbol{\omega}$-extend the corresponding adiabatic Hamiltonian matrix. The result is

$$
\left.B_{2}=\begin{array}{c} 
 \tag{12}\\
M_{i} \\
\rho
\end{array} \left\lvert\, \begin{array}{cccc}
M_{j} \partial_{i}+\partial_{j} M_{i} & \rho \partial_{i} & \eta & \eta_{, i} \\
\partial_{j} \rho & 0 & 0 & \omega_{\beta} \partial_{i} \\
\eta & \eta_{j,} & 0 & 0 \\
\omega_{\alpha} & \partial_{j} \omega_{\alpha} & 0 & 0 \\
\lambda \rho \delta_{\alpha \beta}
\end{array}\right.\right)
$$

where $\eta$ is the specific entropy. The particle map (2) has the following field analogue: the map

$$
\begin{equation*}
L_{\alpha \beta}=\rho^{-1} \omega_{\alpha} \omega_{\beta} \tag{13}
\end{equation*}
$$

is canonical between the super-Hamiltonian matrix $B_{2}$ (12) and the Hamiltonian matrix $\mathbf{B}_{3}$ :

$$
\left.B_{3}=\begin{array}{c} 
 \tag{14}\\
M_{i} \\
\rho \\
\eta \\
L_{\alpha \beta}
\end{array} \begin{array}{cccc}
M_{j} & \rho & \eta & L_{\mu \nu} \\
M_{j} \partial_{i}+\partial_{j} M_{i} & \rho \partial_{i}-\eta_{, i} & L_{\mu \nu} \partial_{i} \\
\partial_{j} \rho & 0 & 0 & 0 \\
\eta_{, j} & 0 & 0 & 0 \\
\partial_{j} L_{\alpha \beta} & 0 & 0 & \lambda\left\{L_{\alpha \beta}, L_{\mu \nu}\right\}
\end{array}\right)
$$

where $\left\{L_{\alpha \beta}, L_{\mu \nu}\right\}$ is given by the formula (3) with the variables $R$ and $L$ interchanged. Thus, apart from the $\{\rho, \eta\}$ piece, the Hamiltonian matrix $\mathbf{B}_{3}$ corresponds to the current Lie algebra

$$
\begin{equation*}
D_{n} \propto(\mathscr{G} \otimes K) \tag{15}
\end{equation*}
$$

and the full Hamiltonian matrix $B_{3}$ corresponds to the semidirect sum Lie algebra

$$
\begin{equation*}
D_{n} \propto\left[K \oplus \Lambda^{n} \oplus(\mathscr{G} \otimes K)\right] . \tag{16}
\end{equation*}
$$

We now are in a position to derive the motion equations. Having found the Hamiltonian structure(s), we need only to specify the Hamiltonian function, i.e. the total energy. Since we are dealing with the non-relativistic case, we take the total energy, as in adiabatic fluid dynamics, to be the sum of kinetic and potential energies

$$
\begin{equation*}
H=\frac{\boldsymbol{M}^{2}}{2 \rho}+\rho e \tag{17}
\end{equation*}
$$

where $e$ is the specific energy (inernal + external):

$$
\begin{equation*}
e=e(\rho, \eta, L, x) \tag{18}
\end{equation*}
$$

Thence, we obtain the motion equations

$$
\begin{align*}
& -\boldsymbol{M}_{i, t}=\left(\rho^{-1} \boldsymbol{M}_{i} M_{j}+\delta_{i j} P\right)_{, j}+\rho \frac{\partial e}{\partial x_{i}}  \tag{19a}\\
& -\rho_{, t}=\operatorname{div}(\boldsymbol{M})  \tag{19b}\\
& -\eta_{, t}=\rho^{-1} \eta_{, j} M_{j}  \tag{19c}\\
& -\omega_{\alpha, t}=\operatorname{div}\left(\omega_{\alpha} \rho^{-1} \boldsymbol{M}\right)+\lambda \rho^{2} \omega_{\alpha} \frac{\partial e}{\partial \omega_{\alpha}} \quad \text { (no sum on } \alpha \text { ) } \tag{19d}
\end{align*}
$$

where

$$
\begin{equation*}
P:=\left(\rho \frac{\partial}{\partial \rho}+\omega_{\beta} \frac{\partial}{\partial \omega_{\beta}}-1\right)(\rho e) \tag{20}
\end{equation*}
$$

is the pressure. In the case that the even variables $L_{\alpha \beta}$ are chosen instead of the odd ones $\omega_{\alpha}$, one has

$$
\begin{equation*}
-L_{\alpha \beta, t}=\operatorname{div}\left(L_{\alpha \beta} \rho^{-1} \boldsymbol{M}\right)+\lambda \rho\left\{L_{\alpha \beta}, L_{\mu \nu}\right\} \frac{\partial e}{\partial L_{\mu \nu}} \tag{21}
\end{equation*}
$$

with the pressure function $P$

$$
\begin{equation*}
P:=\left(\rho \frac{\partial}{\partial \rho}+L_{\mu \nu} \frac{\partial}{\partial L_{\mu \nu}}-1\right)(\rho e) \tag{22}
\end{equation*}
$$

Remark. From formulae (19d) and (21) we see that the spinning variables $\omega$ and $L$ are not frozen-in.

One of the authors (BAK) was supported by the National Science Foundation.

## References

[1] Berezin F A and Marinov M S 1977 Ann. Phys., NY 104336
[2] Kaufman A N 1982 Phys. Fluids 251993
[3] Kupershmidt B A 1987 Elements of Superintegrable Systems (Dordrecht: Reidel)

